Frequency split metal artifact reduction (FSMAR) in computed tomography.
نویسندگان
چکیده
PURPOSE The problem of metal artifact reduction (MAR) is almost as old as the clinical use of computed tomography itself. When metal implants are present in the field of measurement, severe artifacts degrade the image quality and the diagnostic value of CT images. Up to now, no generally accepted solution to this issue has been found. In this work, a method based on a new MAR concept is presented: frequency split metal artifact reduction (FSMAR). It ensures efficient reduction of metal artifacts at high image quality with enhanced preservation of details close to metal implants. METHODS FSMAR combines a raw data inpainting-based MAR method with an image-based frequency split approach. Many typical methods for metal artifact reduction are inpainting-based MAR methods and simply replace unreliable parts of the projection data, for example, by linear interpolation. Frequency split approaches were used in CT, for example, by combining two reconstruction methods in order to reduce cone-beam artifacts. FSMAR combines the high frequencies of an uncorrected image, where all available data were used for the reconstruction with the more reliable low frequencies of an image which was corrected with an inpainting-based MAR method. The algorithm is tested in combination with normalized metal artifact reduction (NMAR) and with a standard inpainting-based MAR approach. NMAR is a more sophisticated inpainting-based MAR method, which introduces less new artifacts which may result from interpolation errors. A quantitative evaluation was performed using the examples of a simulation of the XCAT phantom and a scan of a spine phantom. Further evaluation includes patients with different types of metal implants: hip prostheses, dental fillings, neurocoil, and spine fixation, which were scanned with a modern clinical dual source CT scanner. RESULTS FSMAR ensures sharp edges and a preservation of anatomical details which is in many cases better than after applying an inpainting-based MAR method only. In contrast to other MAR methods, FSMAR yields images without the usual blurring close to implants. CONCLUSIONS FSMAR should be used together with NMAR, a combination which ensures an accurate correction of both high and low frequencies. The algorithm is computationally inexpensive compared to iterative methods and methods with complex inpainting schemes. No parameters were chosen manually; it is ready for an application in clinical routine.
منابع مشابه
Evaluation of Metal Artifact Reduction software in Computed Tomography
Introduction: The image quality of computed tomography (CT) can be seriously lowered by metal implants of patients. These implants are known to exert a significant impact on diagnostic accuracy due to artifacts. The current study aimed to assess the usefulness of Metal Artifact Reduction (MAR) software in the reduction of metal artifacts, in comparison to iterative rec...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملMetal Artifact Reduction of Dental Fillings in Head and Neck CT Images
Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...
متن کاملEvaluation of Metal Artifacts in Cone Beam Computed Tomography by Metal Supported Porcelain Crowns Using Different FOV and Localizations: An In Vitro Study
Introduction: Metal-supported porcelain crowns (MSPC) and bridge restorations may be present in the mouths of patients undergoing CBCT imaging. Artifacts that are caused by these MSPCs may adversely affect image quality. The aim of this study is to determine the effect of different FOV (field of view) and localization in FOV on metal artifacts caused by MSPC. Methods:</...
متن کاملMadr : Metal Artifact Detection and Reduction
Metal in CT-imaged objects drastically reduces the quality of these images due to the severe artifacts it can cause. Most metal artifacts reduction (MAR) algorithms consider the metal-affected sinogram portions as the corrupted data and replace them via sophisticated interpolation methods. While these schemes are successful in removing the metal artifacts, they fail to recover some of the edge ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 4 شماره
صفحات -
تاریخ انتشار 2012